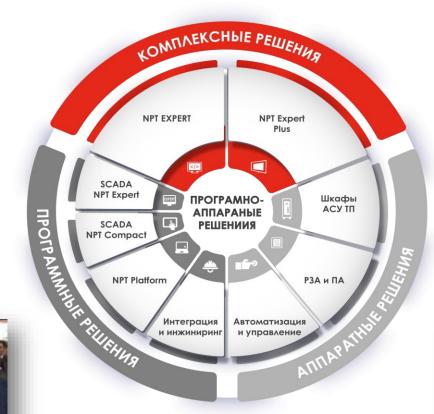


Отечественная платформа для построения корпоративных систем класса MES/EAM

О компании

Группа компаний «ЭнергопромАвтоматизация» - российский производственный холдинг, предоставляющий полный комплекс услуг в части автоматизации энергетических и промышленных объектов любой сложности: от разработки проекта до ввода системы в промышленную эксплуатацию.


Программные продукты:

- комплекс ПО NPT Platform
- SCADA NPT Compact
- SCADA NPT Expert
- SCADA NPT Expert Plus
- CAMP **SCADA Studio**

Аппаратные решения:

- контроллеры серий NPT и NPT-М
- контроллеры Compact RTU

Комплексные решения:

- ПТК NPT Expert
- **ПТК NPT Expert Plus**

Технические средства автоматизации объектов.

Общие характеристики контроллеров NPT, NPT-M, Compact RTU:

- ВНЕСЕНО

 МИНПРОМТОРГ
 РОССИИ

 В РЕЕСТР
- Наличие свободно программируемой логики МЭК 61131-3 (FBD);
- Поддержка протоколов семейства МЭК 60870-5-10х и МЭК 61850;
- Исполнение для установки в помещении или на ОРУ;
- Исполнение на класс точности 0.5 или 0.2S (NPT-M, RTU Compact);
- Web-интерфейс для контроля и параметрирования;
- САПР для конфигурирования и диагностики **SCADA Studio**.

Объем контролируемой информации (зависит от исполнения):

- До 256 сигналов телесигнализации;
- До 128 сигналов телеуправления;
- До 128 сигналов «сухой контакт»;
- До 64 сигналов 4÷20мA;
- До *четырех* модулей прямого ввода для подключения сигналов от ТТ и TH 3,4 или 8 токов 1A или 5A; 3, 4 или 5 напряжений 57,7(100)B;
- Два или четыре изолированных порта RS485 для интеграции МИП, РЗА, ПА

КП NPT BAY

YCO NPT RTU

Контроллер ячейки Compact RTU

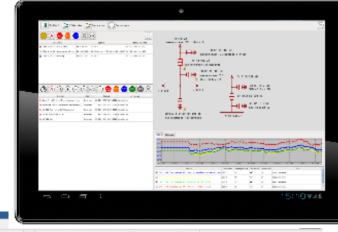
Программные средства автоматизации объектов и ДП

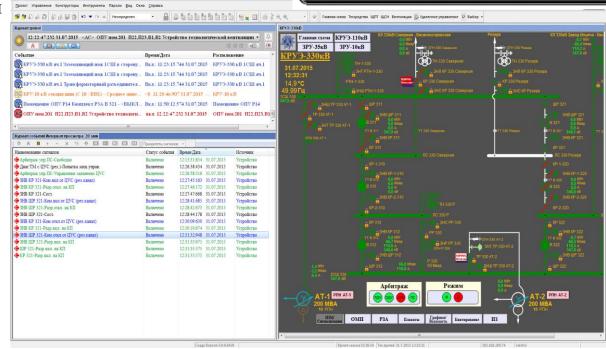
SCADA NPT Compact

Модульное, кроссплатформенное (Windows, Linux, Android) решение для небольших объектов. Серверная часть может работать на типовом промышленном контроллере (например, на сервере ТМ).

- Автоматизация ТП, РТП, ПС до 110 кВ;
- Контроль работы ОВБ;
- Сетевая автоматика на базе реклоузеров, выключателей нагрузки, интеллектуальных разъединителей.

SCADA NPT Expert


Классическая SCADA для автоматизации крупных объектов (ПС 110кВ и выше) с постоянным обслуживающим персоналом (Windows, Linux).


- Объединение группы объектов;
- Автоматизация ДП управление энергорайоном
- Электронные бланки переключений
- Советчик диспетчера
- Топологический анализ
- Удаленное управление КА из РДУ, ОДУ

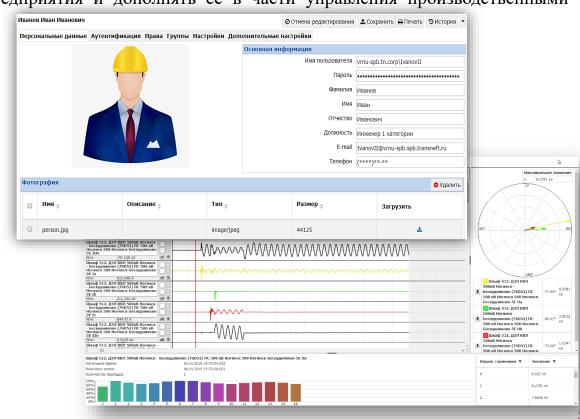
SCADA Studio

САПР для проектирования, наладки, параметрирования систем на базе SCADA NPT Expert, SCADA NPT Compact, а также для конфигурирования контроллеров серий NPT, NPT-M, Compact RTU.

Платформа для создания корпоративных информационных систем (КИС)

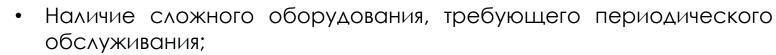
NPT Platform

Платформа предназначена для автоматизации производственной деятельности предприятий (в том числе организация ТОиР и МК) и управления активами, обеспечивая цифровой документооборот, автоматический сбор данных со всех источников и устройств, автоматический и ручной анализ аварийной и диагностической информации, отображение их пользователю в удобном формате.


Платформа может быть интегрирована в существующую ERP-систему предприятия и дополнять её в части управления производственными

процессами предприятия с использованием оценки рисков:

✓ управление производственными процессами – MES;

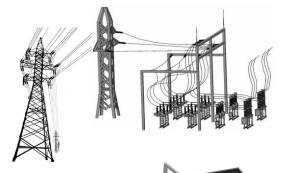

✓ управление основными фондами (производственными активами) – EAM.

- Автоматизация бизнес-процессов предприятия (MES, EAM), подстраиваясь под нужды конкретного заказчика.
- Предоставление инструментария по автоматическому сбору и анализу данных о состоянии оборудования.
- Оптимизация работы сотрудников.
- Оперативное выявление проблем в работе оборудования на раннем этапе.

Предпосылки внедрения корпоративных ИС класса MES/EAM

Сложные технологические процессы, нарушение которых может привести к серьезным финансовым потерям или к аварийной ситуации;

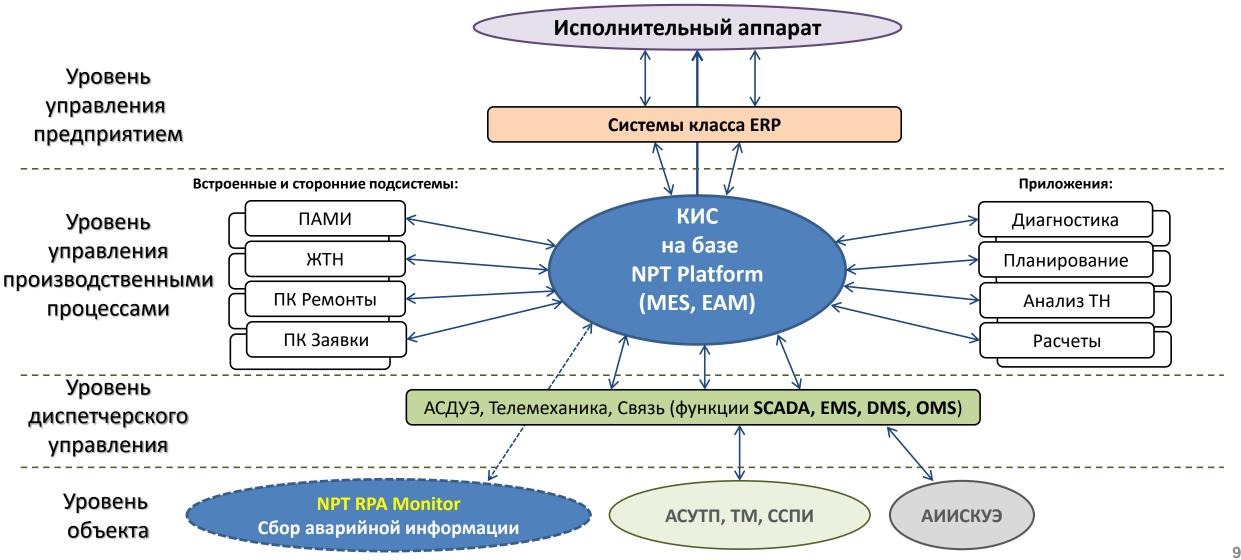
Сложности в организации и контроле процессов обслуживания;


Сложная структура предприятия, множественные согласования, участи разных служб и специалистов в вопросах обслуживания, наличие филиалов, территориальная распределенность удаленность объектов.

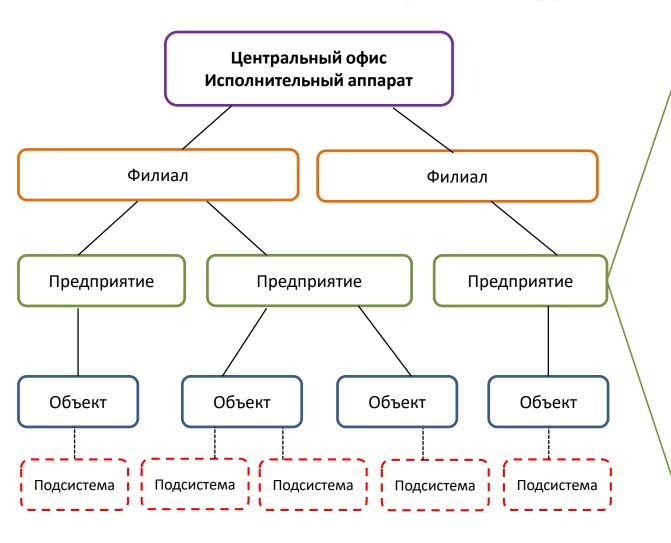
Проблемы управления активами

Проблемы: Решения: Многообразие активов Представление данных на основе CIM-моделей Неструктурированность Переход к распределенным базам данных Отсутствие единой БД Структурирование информации Сложный документооборот Формализация бизнес-процессов Объединение информации от Несколько форм представления разных систем информации Перевод документооборота в Распределенность активов электронный вид с перекрестными связями между системами Отсутствие синхронизации Автоматический анализ информации Большой объем информации

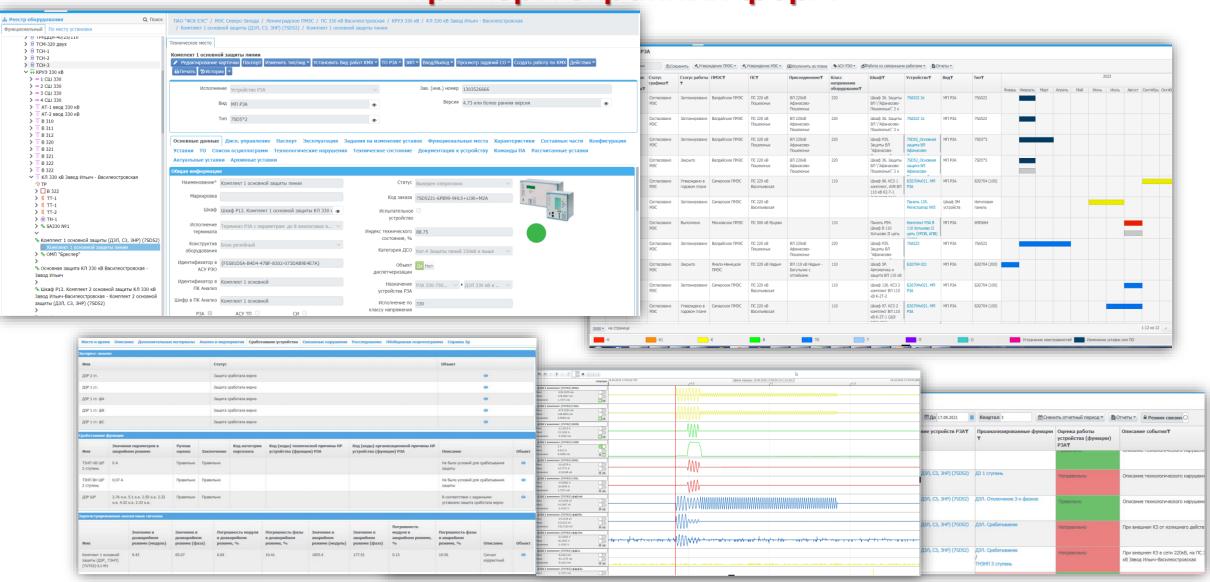
Внедрение корпоративных информационных систем (КИС) управления активами на базе IT-решений NPT Platform


КИС на базе NPT Platform. Доступный функционал

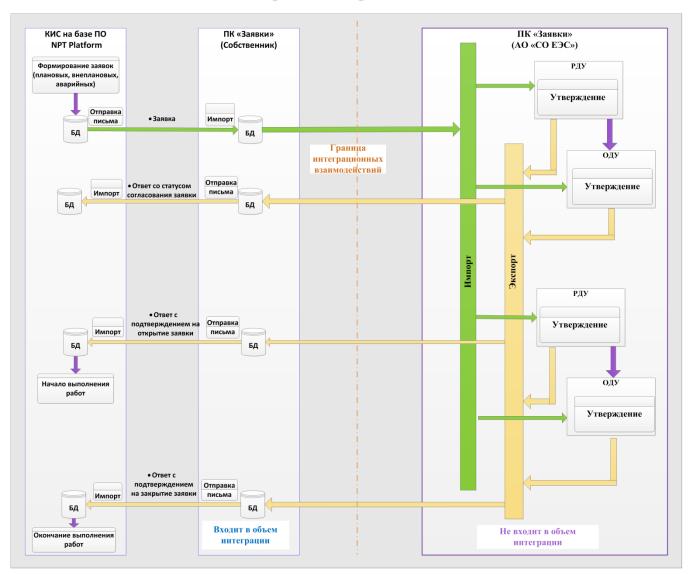
NPT Platform Реестры оборудования, средств измерений, изм. БД активов, карточки Справоч-Ведение реестров и справочников CIM оборудования ники каналы, линии, опоры, сотрудники, подрядчики и т.д. Электронный архив Паспорта, Руководства, Протоколы, Акты, Ведение НТД Информационные письма и т.д. документов Планы: месячный, Расчет потребностей, Планирование работ (по видам оборудования, по Планирование работ по ТОиР и МК годовой, многолетний видам работ, по людям), планирование ЗИП и др. расчет затрат Вывод оборудования Контроль Работа с заявками, контроль план/факт, согласование Организация и ведение работ из работы проведения работ различных процедур и пр. Сопровождение этапов строительства и Сопровождение строящихся и Подключение смежных Фиксация реконструкции, приемка работ и оборудования, НТД организаций в Систему реконструируемых объектов этапов взаимодействие с поставщиками, монтажниками и пр. Силовое и технологическое оборудование, РЗА, Оценка состояния Диагностика работы оборудования оборудования АСУТП и средства измерения Анализ аварийной информации, расчет ТКЗ, расчет Отчеты Токи Карты Показа-Расчетные задачи уставок РЗА, расчеты различных показателей o TH К3 уставок тели Типовые отчеты Системы, отчеты по формам Отчеты PDF, HTML, Рассылки, Отчеты и оповещения Минэнерго и др, специализированные отчеты XML, DOCX, XLSX уведомления Администрирование, ведение работ по обслуживанию Обслуживание Создание единого информа-Сервисные функции Системы, ИБ, интеграция с другими ИС Системы ционного пространства

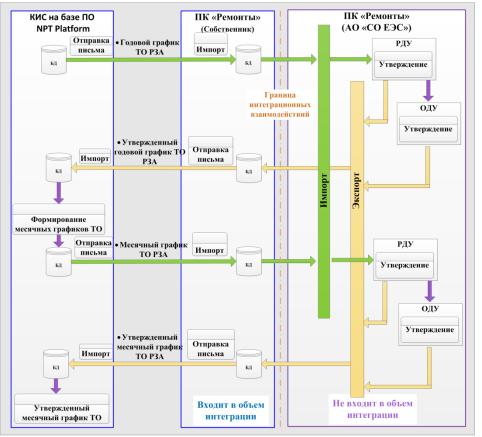

8

Mecto КИС на базе NPT Platform в иерархии предприятия

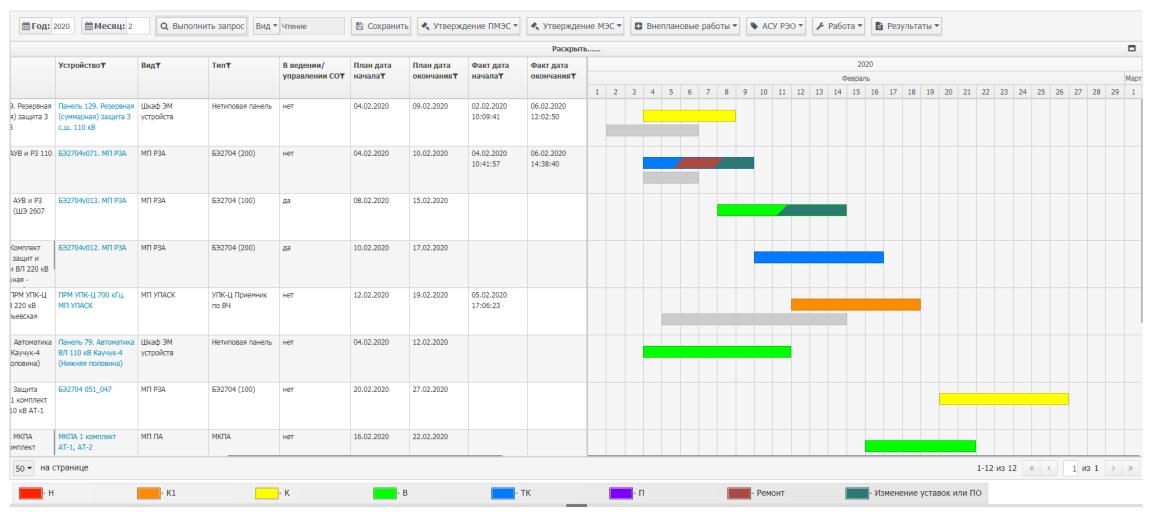


Архитектура NPT Platform




Примеры экранных форм

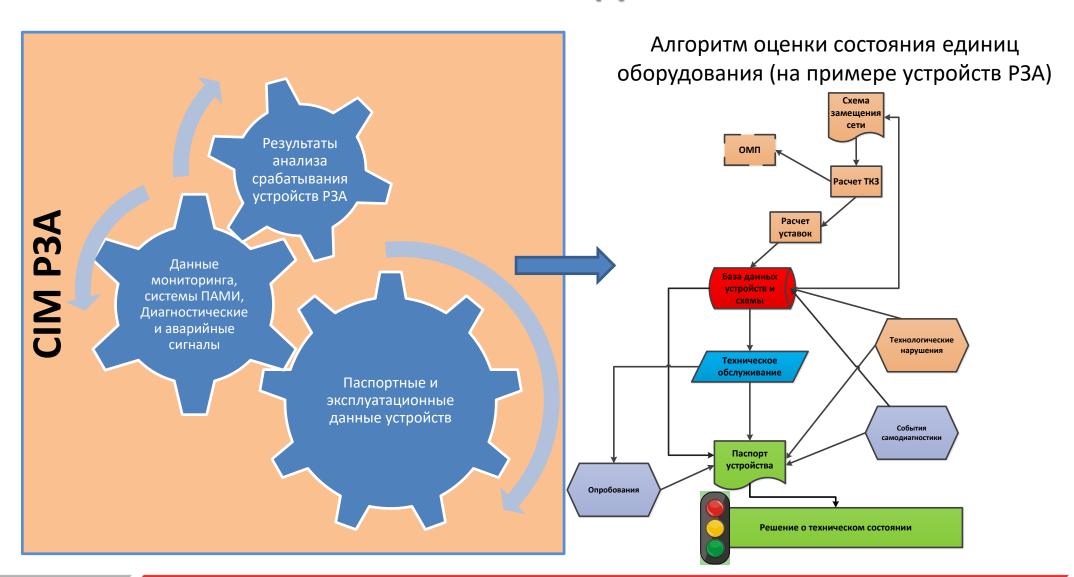
Пример бизнес-логики согласования работ



- ✓ Формирование заявок
- Согласования, в том числе с использованием сторонних информационных систем
- ✓ Организация и контроль проведения работ

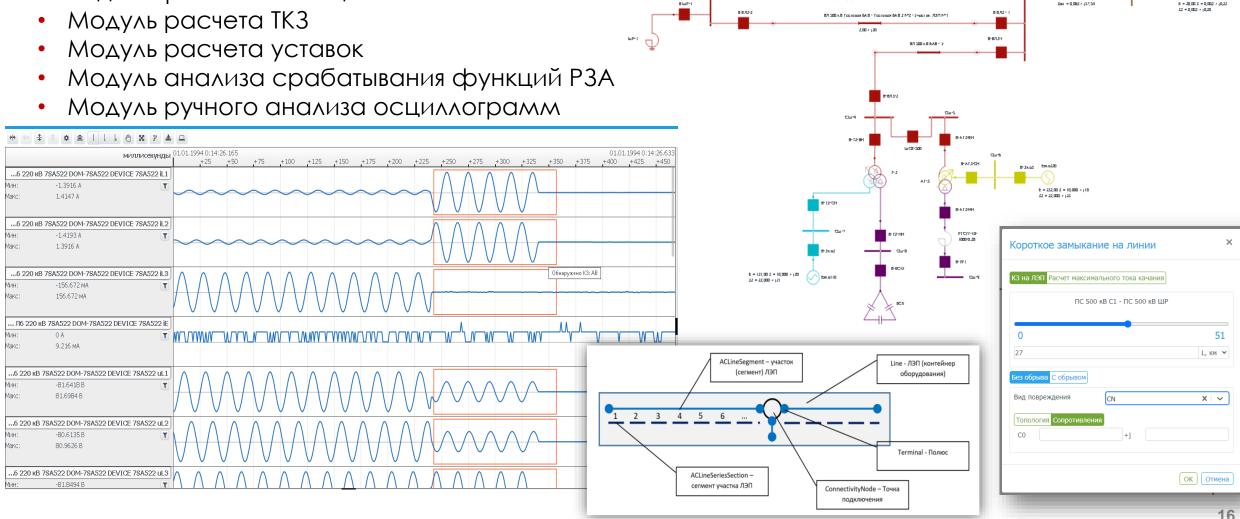
Месячный, годовой и многолетние графики ТО

Месячный график ТО РЗА



Регистрация, ведение и анализ технологических нарушений

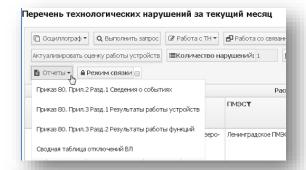
Перечень технологических нарушений за текущий месяц 🖺 Осциллограф 🔻 🕜 Работа с ТН 🔻 🗗 Работа со связанными ТН 🔻 📂 Подробная информация 🔻 💽 Классифицировать ТН 🔻 🧮 Количество нарушений: 19 **⊞OT** 01.01.2020 ₩До 14.02.2020 **₽** Режим связки ■ пмэст ПСТ Диспетчерское наименование Сработавшие функции▼ Оценка работы Классифик Описание события ^ ПрисоединениеТ устройств РЗАТ устройства (функции) ация ТН▼ P3AT Ленинградское ПС 330 кВ Парнас КВЛ 110 кВ Парнас -Комплект РЗА (АУВ, УРОВ, ТАПВ) / АПВ / ДЗЛ. Срабатывание / ТЗНП Без оценки На ПС 330 кВ Парнас в 15:02:21.177 произошло отключение КВЛ 110 кВ Парнаспмэс Парнас-Коммунальная Комплект защит №1 (ДЗЛ, ДЗ, ТЗНП, НЕЙТР / МФТО. Срабатывание / ДЗЛ. Парнас-Коммунальная действием ДЗЛ, ТЗНП, МТО при замыкании на землю в МФТО) / Комплект защит №2 (ДЗ, Срабатывание / ТЗНП НЕЙТР / МФТО прилегающей сети 110 кВ по ф. "В" (Ікз ф. "В" = 29,06 кА). АПВ В 110 Парнастзнп мфто) Спабатывание / ТЗНП НЕЙТР / МФТО Коммунальная не было вспелствие неуспешного опробования линии с ПС 330 кВ Колпино Т-6 ввод 10 кВ Событие На ПС 330 кВ Колпино в 09:04:09.746 произошло отключение Т-6 действием ДЗТ по Ленинградское Правильно пмэс факту повреждения проходного изолятора ошиновки 10 кВ Т-6 ф.С при замыкании на землю в прилегающей сети 10 кВ по ф.В (Ікз ф.В = 6 кА) Ленинградское ПС 330 кВ Завод Ильич ІІш ГРУ 6кВ Шкаф 0. Панель защит Т-4 / Шкаф 0. На ПС 330 кВ Завод Ильич при КЗ в прилегающей сети 6 кВ зафиксировано Без оценки пмэс Панель зашит Т-1 / Панель 0, АВР 6кВ / возгорание кабельной воронки ф.15-36/57 (пуск МТЗ, Тср = 0,5 сек) и перекрытие Шкаф 0. Панель защит МШВ-1 6кВ реактора ф.15-36/57 продуктами горения. По факту повреждения реактора ф.15-36/57 произошло срабатывание ускоренной МТЗ с пуском по напряжению стороны 6 кВ Т-1 ПС 330 кВ TCH-2 Ленинградское P3A B 35 TCH-2 МФТО. Срабатывание Без оценки На ПС 330 кВ Василеостровская при появлении «земли» в сети 35 кВ произошло ПМЭС Василеостровская повреждение кабельной муфты по стороне 35 кВ ТСН-2, что привело к междуфазному КЗ (Ікз = 7.8 кА) и последующему срабатыванию МТО в составе РЗА ТСН-2 с лействием на отключение В 35 ТСН-2. Отключение В 35 кВ ТСН-2 привело к ПС 330 кВ AT-1 Комплект 1 основной защиты АТ-1 Ленинградское Без оценки Василеостровская ПМЭС (ДЗТ, ГЗ, МТЗ HH) (7UT63) / Комплект резервных защит СВ-12-110 / Комплект 1 основной зашиты АТ-2 (ЛЗТ ГЗ МТЗ Ленинградское ПС 330 кВ Парнас AT-1 Комплект 1 основной защиты АТ-1 Без оценки ПМЭС (ДЗТ, ГЗ, МТЗ НН, ТА) (7UT63) / ДЗО стороны СН / Комплект 2 основной зашиты (ЛЗЛ СЗ ЗНР) (75D52) / Ленинградское ПС 330 кВ Парнас КВЛ 330 кВ Северная-Комплект 1 основной защиты (ДЗЛ, СЗ, 1 --Без оценки ПМЭС Парнас 3HP) (7SD52) / Комплект 2 основной защиты (ДЗЛ, СЗ, ЗНР) (7SD52) / Комплект 2 основной зашиты АТ-1 AT-2 Комплект 1 АОПО АТ-1 и АТ-2 Ленинградское ПС 330 кВ Без оценки ПМЭС Василеостровская 25 ▼ на странице 1-19 из 19 « < 1 из 1 > »

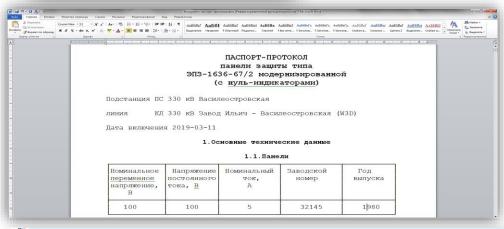

Оценка состояния оборудования

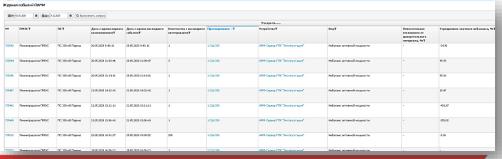
КИС на базе NPT Platform. Специализированные и расчетные модули

E = 525,00 £ = 10,000 + 129£2 =

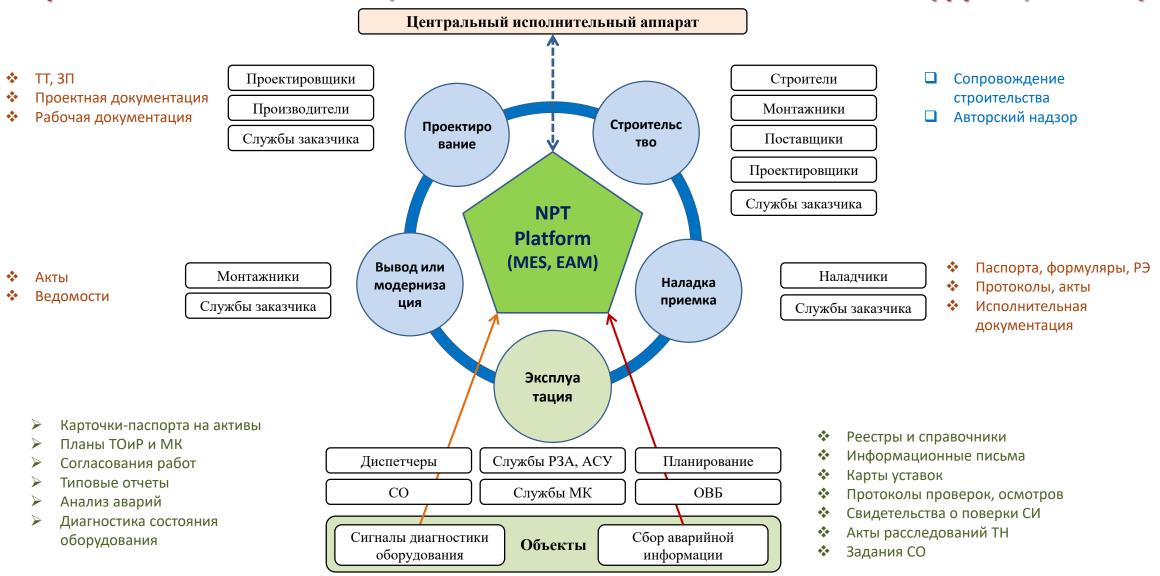
Редактор схем замещения


Формирование аналитических отчетов


Типовые отчеты


- 1. Планы-графики ТОиР (МК).
- 2. Паспорт-протокол устройств.
- 3. Справка по форме 2р.
- 4. Хронология событий технологического нарушения (Приложение к справке 2p).
- 5. Отчеты по приказу 80.
- 6. Сводная таблица отключений ВЛ.
- 7. Результаты расчета КПЭ.
- 8. Журнал учета ЗИП (РЗА и АСУ ТП).
- 9. Журнал неисправностей устройств (РЗА и АСУ ТП).
- 10. Журнал учета дефектов и неполадок устройств (РЗА и АСУ ТП).
- 11. Журнал РЗА.
- 12. Журнал АСУ ТП.
- 13. Ведомость выведенных устройств (РЗА и АСУ ТП)
- 14. Ведомость длительно выведенных устройств (РЗА и АСУ ТП)

Дополнительные отчеты


- 1. Журнал событий самодиагностики.
- 2. Экспресс-протокол о технологическом нарушении.
- 3. Полный отчет о технологическом нарушении.
- 4. Журнал событий ПАМИ.
- 5. Журнал событий ЛВС.

Управления жизненным циклом активов на базе NPT Platform (функция EAM)

Структура комплексного решения ГК «ЭнергопромАвтоматизация»

Уровень предприятия Корпоративные информационные системы (КИС)

Управление производственными процессами и активами на базе NPT Platform (MES, EAM)

ERP

Уровень оперативного управления КИС Информационная система ДП (SCADA, OMS, EMS)

SCADA NPT Expert

Система сбора и обработки данных

Анализ аварий

Бланки переключений

Советчик диспетчера

СО (РДУ)

КИС + NPT RPA Monitor

АСУ ТП, ССПИ, ТМ, АИИСКУЭ

Уровень объекта

SCADA NPT Compact

Технические средства автоматизации – контроллеры NPT, Compact RTU, СКСУ

Сбор аварийной информации

Интеграция устройств, ПАМИ

CAΠΡ **SCADA Studio**

19

Финансово-экономический эффект от внедрения КИС на базе NPT Platform

За счет чего достигается:

- Комплексная автоматизация объектов
- Паспортизация активов
- Структурирование информации
- Объединение информации от разных систем
- Автоматический анализ диагностической информации
- Автоматический анализ аварийной информации

- ---> Сбор, обработка диагностической и аварийной информации
- ---> Учет и контроль жизненного цикла активов
- ---> Формализация бизнес-процессов
- ---> Сокращение рутинных операций по синхронизации БД
- ---> Планирование мероприятий ТОиР и МК
- ---> Оценка состояния активов («светофор»)

- Повышение наблюдаемости и управляемости
- Сокращение аварийности
- Снижение вынужденных простоев
- Оптимизация процедур обслуживания
- Общее цифровое пространство с другими ИС (принцип единого окна)

Снижение затрат

Переход на обслуживание на основе оценки рисков

Примеры реализации систем на базе NPT Platform

Опыт внедрения на объектах ПАО «Транснефть» КИАС ДЭО

Наименование системы:

«Корпоративная информационно-аналитическая система по диагностике энергетического оборудования».

Наименование Заказчика, Исполнителя и Кураторов Договора:

- ✓ Заказчик: ООО «ТЭС».
- ✓ Исполнитель: ООО«ЭнергопромАвтоматизация».
- ✓ Кураторы: ДИТ и УГЭ ПАО «Транснефть».

Опыт внедрения на объектах ПАО «Транснефть» КИАС ДЭО

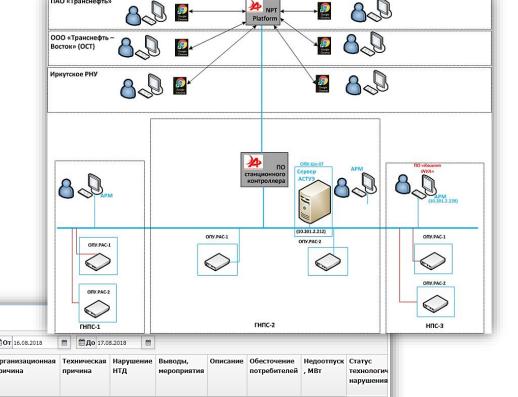
КИАС ДЭО принята в эксплуатацию в соответствии с утвержденным **Актом приемки в постоянную эксплуатацию** корпоративной информационно-аналитической системы по диагностике энергетического оборудования (КИАС ДЭО) на пилотных объектах внедрения от 24.07.2018 г.

За время проведения опытной эксплуатации

- ✓ В реестр системы введено 388579 объектов
- ✓ Количество пользователей в системе 2731 пользователь
- У В системе сформирована и утверждена программа диагностики на 2018 год, в составе которой:
 - заявок на проведение диагностики 3140
 - заданий на проведение диагностики 40
- ✓ В системе проведен весь бизнес-цикл начиная от создания потребности в диагностике заканчивая результатами диагностики, автоматически загруженными в карточки оборудования.

Опыт внедрения на объектах ПАО «Транснефть» Тестовый полигон

Наименование системы:


«Тестовый полигон по сбору и анализу аварийной информации с устройств РЗА и РАС

для Иркутского РНУ».

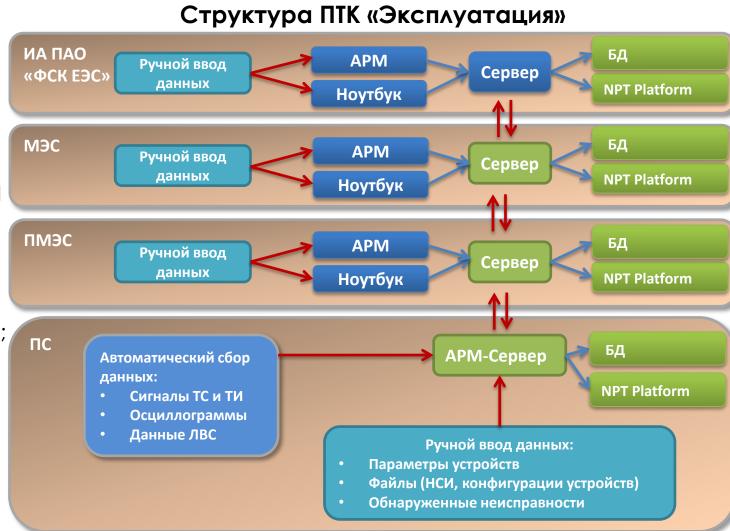
Перечень технологических нарушений

Основные функции системы:

- ✓ Сбор данных РАС на технологический сервер НПС, конвертация собранных данных в формат COMTRADE.
- ✓ Ретрансляция информации на уровень РНУ в формате COMTRADE с организацией рабочего места по доступу к этой информации.

Опыт внедрения на объектах ПАО «ФСК ЕЭС»

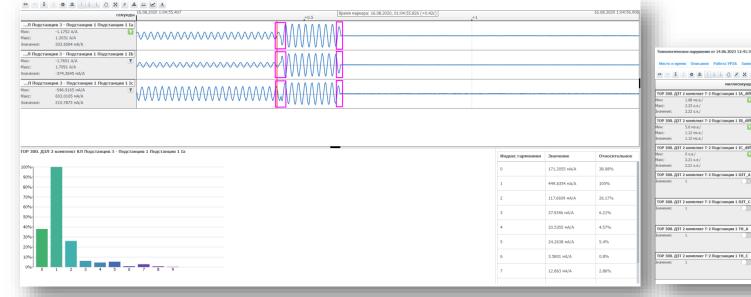
Наименование системы:

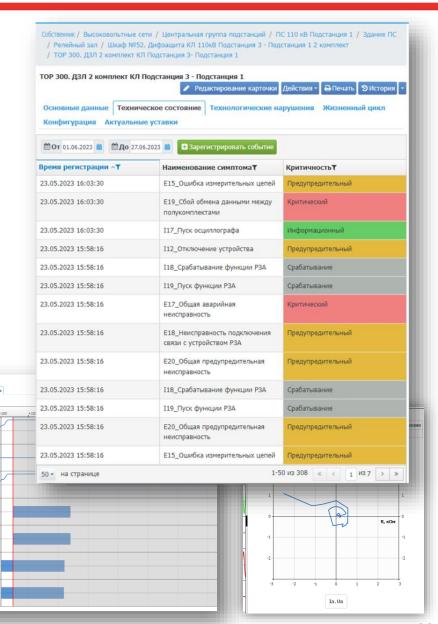

«Система автоматической диагностики и повышения эффективности обслуживания устройств РЗА, АСУ ТП и средств измерений ПС» - ПТК «Эксплуатация».

ПТК «Эксплуатация». Описание проекта

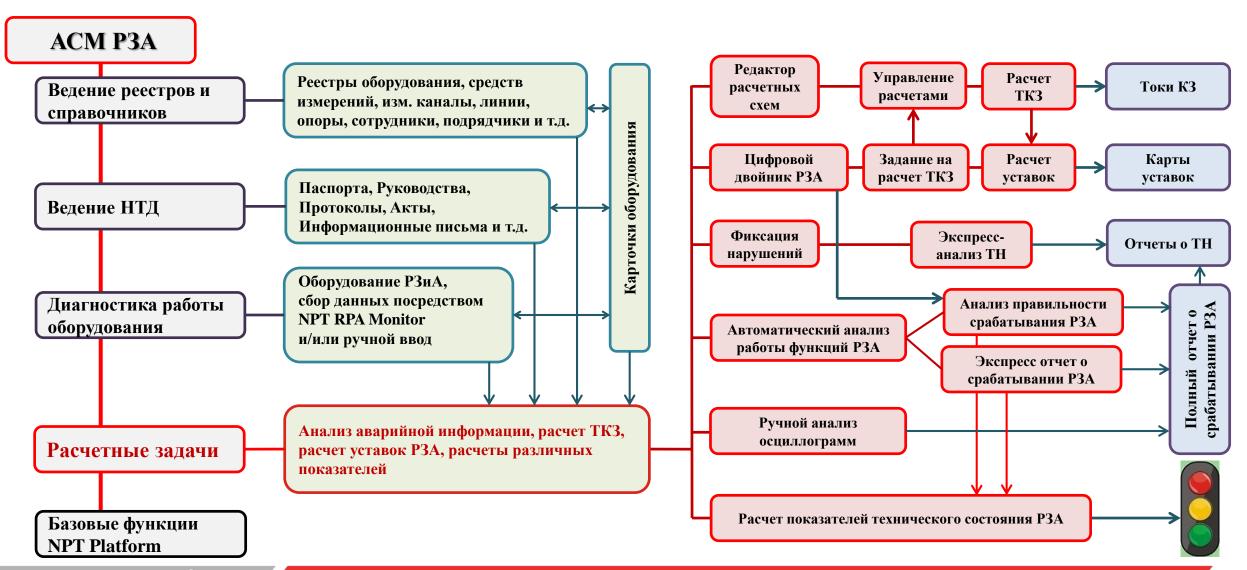
Основные функции системы:

- ✓ формирование и ведение реестра устройств РЗА, АСУ ТП и СИ;
- ✓ регистрация и анализ неисправностей и отказов устройств РЗА, АСУ ТП и СИ;
- ✓ автоматизированный анализ функционирования устройств РЗА, АСУ ТП и СИ;
- ✓ анализ правильности работы устройств P3A;
- ✓ управление работами по МК, техническому обслуживанию и ремонтам;
- ✓ учет и ведение ЗИП;
- ✓ сопровождение строящихся и реконструируемых объектов;
- ✓ управление организационной деятельностью;
- ✓ ведение нормативно-справочной информации.


Новое решение на базе NPT Platform. ACM P3A


Назначение:

Автоматизированная система мониторинга релейной защиты и автоматики . Обственник / Высоковольтные сети / Центральная группа подстанций / ПС 110 кВ Подстанция 1 / Здание ПС / Релейный зал предназначена для организации постоянного мониторинга состояния устройств и комплексов РЗА, / Шкаф №52. Дифзащита КЛ 110кВ Подстанция 3 - Подстанция 1 2 комплект / ТОР 300. ДЗЛ 2 комплект КЛ Подстанция 3 - Подстанция автоматизации эксплуатационных функций персонала службы РЗА и поддержки в принятии решения в части анализа и правильности функционирования устройств и комплексов РЗА. Состояние устройства В работе Наименование* ТОР 300. ДЗЛ 2 комплект КЛ Подстани Реализует функции **MES (EAM)** системы в части оборудования релейной защиты. Индекс технического 70 Производимое ТОР 300 ДЗЛ 521 Наиболее влияющий Е15_Ошибка измерительных цепей 🔍 Шкаф №52. Дифзащита КЛ 110кВ Па 🁁 ▼ Ⅲ ПС 110 кВ Постанция 1 Категория РЗА Релейная защита У ∮ Устройства РЗА > % Защиты Т-1 1 комплект > % Защиты Т-1 2 комплект Все сообщения > 80 T-2 > 80 T-3 > 80 T-4 Персональные сообщения Название сообщения → KPYЭ 110 кВ > ₩ KPY 20 KB > II KPV 10 KB Трупповые рассылки Технологические нарушения Результат анализа работы "ТОР 300. ДЗ > ₩ KPY 6 KB 2 комплект Т-2": Неправильно Тематические рассылки Технологические нарушения Результат анализа работы "ТОР 300. ДЗ 2 комплект Т-1": Правильно Подписки Техническое состояние Индекс тех, состояния "ТОР 300, ДЗТ 2 **ৌ** Темы Основная защита КЛ 110 кВ Подстанция 3 - Подстанция 1 2 комплект комплект Т-1" снижен 🗆 🏚 Технологические нарушения Результат анализа работы "ТОР 300. Ре защ КЛ ГЭС - Подстанция 1": Неправильно Технологические нарушения Результат анализа работы "ТОР 300. ДЗТ 23 апреля 2023 г., 9:46 2 комплект Т-1": Правильно 🗆 🗼 Технологические нарушения Результат анализа работы "ТОР 300. Рез 23 апреля 2023 г., 9:41 защ КЛ ГЭС - Подстанция 1": Правильно 88x 1 cin C88x 1-2 C88x 2-1 68x 2 con 6x8 7-3 con 6x8 7-3 5 th 2 cox CSSc 2-4 CSSc 4-3 SSc 4 cox 5 th 2 cox 5 th


Основные функции АСМ РЗА

- Ведение реестра первичного и вторичного оборудования
- Мониторинг состояния РЗА
- Формирование и ведение моделей сети и вторичного оборудования с использованием СІМ (ГОСТ Р 58651.1-2019)
- Расчет ТКЗ, расчет уставок, расчет коэффициента готовности
- Контроль изменения уставок и конфигурации устройств РЗА
- Регистрация и расследование технологических нарушений
- Анализ правильности функционирования РЗА (на базе цифровых двойников)
- Анализ осциллограмм с помощью нейронных сетей

АСМ РЗА. Структура расчетных задач

Выводы

- Внедрение современных информационных систем в области диагностики состояния и управления производственными процессами позволит существенно повысить качество обслуживания систем на основе микропроцессорной техники, снизить нагрузку на обслуживающий персонал, сократить время реакции на аварийные события и перейти на технологию обслуживания по текущему состоянию.
- Применение современных информационных технологий позволяют создавать гибкие распределенные системы, которые могут быть быстро адаптированы и масштабированы при подключении новых пользователей или объектов.

КОНТАКТЫ

Руководство

Сегаль Александр Викторович Генеральный директор

Горелик Татьяна Григорьевна Директор по развитию бизнеса

Подразделение компании в г. Москве

Тел./факс: (495) 663-36-42

Головной офис компании в г. Санкт-Петербурге

Тел./факс: (812) 702 19 28

Подразделение компании в г. Ростове-на-Дону

Тел./факс: (863) 295 54 22

office@epsa-spb.ru

www.epsa-spb.ru

t.me/epsaspb

СПАСИБО ЗА ВНИМАНИЕ!